ХРОНОПИТАНИЕ

А.Н.Ильницкий

Актуальность проблемы

- процессы жизнедеятельности организма имеют ритм циркадные ритмы, которые происходят в 24-часовом цикле (от латинского circa вокруг и dia день);
- актуально в период пандемии COVID-19: обычный распорядок дня оказался нарушенным, изменилось время приема пищи и сна, что вероятно имеет метаболические последствия;
- хронопитание: распределение потребления энергии, частоты и регулярности приема пищи, продолжительности периодов приема пищи и голодания, а также влияние этих факторов на метаболическое здоровье и риск хронических заболеваний.

Актуальность проблемы

- циркадная биология широко распространена от простейших, цианобактерий и водорослей до растений, грибов и животных;
- молекулярные механизмы, регулирующие циркадные ритмы, схожи среди разных биологических царств жизни, что указывает на более чем 500 миллионов лет естественного отбора;
- жизнедеятельность фундаментально связана с периодом специфических колебаний окружающей среды, таких как свет/темнота, которые стали сигналами для вовлечения эндогенного механизма часов;
- ритмы, которые не согласованы с окружающей средой, не только нейтральны, но и вредны для физического состояния организма;
- например, мыши с эндогенным периодом значительно короче 24 ч (из-за мутации тау в казеинкиназе 1є имеют значительно более низкую приспособляемость к среду.

Элементы системы хронопитания

1). Биологические часы

- циркадная система синхронизации управляет каждодневными биологическими ритмами и синхронизирует физиологию и поведение с временным миром;
- супрахиазматические ядра гипоталамуса центральный регулятор, работающий на основе двух раздражителей свет и потребление пищи;
- почти все ткани имеют периферические циркадные ритмы, находятся под контролем циркадных или часовых генов;
- ритмический контроль над всеми функциями организма, от чувства сонливости до ощущения голода.

Биологические часы

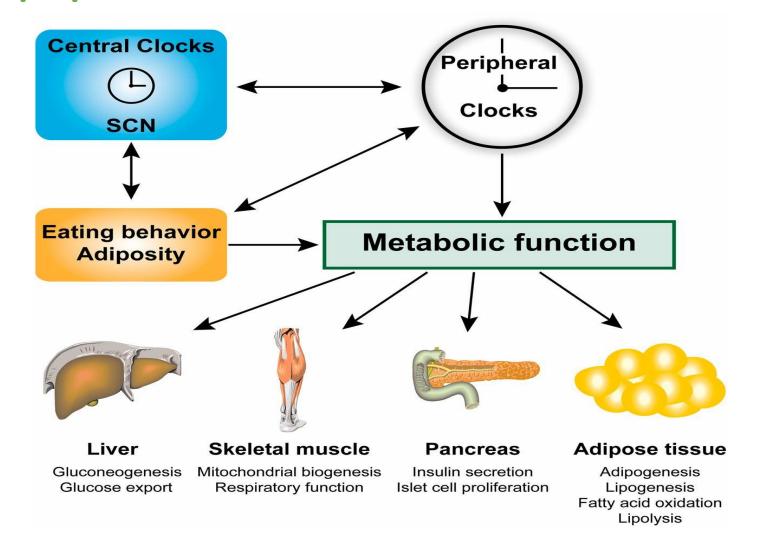
- пищевое поведение следует строгой циркадной схеме;
- ночные грызуны, такие как мыши и крысы, обычно потребляют большую часть калорий с пищей в темноте, для них это активная фаза суток;
- когда мышей заставляли потреблять пищу в неактивную фазу, они набирали больше веса по сравнению с мышами, которые потребляли изокалорийную пищу во время активной фазы;
- калораж не всегда имеет одинаковый метаболический эффект, многое зависит от времени суток, в которое потребляется пища;
- наблюдения за метаболическим статусом людей подтвердили эти выводы и показали, что метаболические реакции на прием пищи в высокой степени зависят от времени суток, в которое они потребляются.

Биологические часы

- пациенты, потреблявшие основной объем пищи до 3 часов дня, имели достоверно больший эффект, чем те, у которых основной прием пищи был после 3 часов дня во время 20-недельного вмешательства по снижению веса у 420 женщин с ожирением (Garaulet et al., 2013);
- у 93 женщин с избыточным весом или ожирением было показано положительное влияние высокого потребления калорий за завтраком по сравнению с вечерним временем с точки зрения снижения массы тела, окружности талии, уровней сывороточного грелина и липидов, показателей аппетита и индексов инсулинорезистентности (Jakubowicz et al., 2013);
- во многих работах показана важность регулярности приема пищи для кардиометаболического здоровья (Farshchi et al., 2004; Farshchi et al., 2005; Madjd et al., 2016; Pot et al., 2016).

Биологические часы

- уровень глюкозы и триацилглицерина (TAG) в сыворотке крови циркадная регуляция;
- пероральные тесты на толерантность к глюкозе демонстрируют, что чувствительность к инсулину достигает максимума утром и снижается позже в течение дня;
- время приема пищи и физических упражнений обусловливает постпрандиальные реакций на глюкозу и TAG (Edinburgh et al., 2017);
- многие люди обычно употребляют пищу три раза в день и, таким образом, проводят большую часть времени бодрствования в постпрандиальном состоянии (de Castro, 2004), при этом увеличенный уровень постпрандиальной гликемии и триглицеридемии связаны с кардиометаболическими заболеваниями (Ning et al., 2012; Nordestgaard et al., 2009).



Биологические часы — сложная многоуровневая система всего организма

Взаимоотношения между центральными и периферическими биологическими часами

Молекулярная регуляция циркадных ритмов

- автономный осциллятор, который производит циркадные ритмы, наблюдаемые на всех уровнях организции организма, находится на молекулярном уровне;
- молекулярные часы это петля обратной связи транскрипции-трансляции, в которой активаторы транскрипции управляют производством своих собственных репрессоров в цикле 24 часа;
- эпигенетические механизмы способствуют пластичности метаболических взаимодействий с этими основными часами;
- многочисленные гены, управляемые часами (CCGs), являются ключевыми регуляторами метаболизма;
- взаимодействие часов и зависимых от питательных веществ метаболических регуляторов настолько тесно, что различие между их ритмическими транскрипционными выходами сложно различимо.

Центральные или главные циркадные часы

- циркадная система млекопитающих и человека иерархическая организация с генератором "главных часов" в супрахиазматическом ядре (SCN) гипоталамуса, который синхронизирует фазы всех других молекулярных часов в организме;
- специализированные фоторецепторные клетки сетчатки, экспрессирующие меланопсин, известные как "внутренне фоточувствительные ганглиозные клетки сетчатки", преобразуют поступающий свет и передают эту информацию в SCN через ретиногипоталамический тракт;
- свет вызывает фазовые сдвиги в главных циркадных часах, что приводит к эффективной синхронизации часов SCN с внешним циклом света/темноты.

Синхронизация центральных и периферических циркадных часов

- в дополнение к основным часам в SCN, почти каждая клетка в организме имеет автономные часы;
- сеть нейронов-стимуляторов в SCN действует как оркестратор этих самоподдерживающихся осцилляторов по всему телу, передавая фазу, захваченную светом;
- они включают регуляцию температуры тела, а также прямую связь через вегетативную иннервацию и эндокринную сигнализацию, в первую очередь через глюкокортикоиды надпочечников и мелатонин пинеальной железы. В качестве выходных сигналов главных часов используются колебания температуры тела, плазменного кортизола и ритмов мелатонина.

Синхронизация центральных и периферических циркадных часов

- SCN генерируют поведенческие ритмы, включая бодрствование/сон, активность/отдых и питание/голодание;
- без функциональных центральных часов животные в постоянной темноте аритмичны в своей активности и потребляют одинаковое количество пищи как в светлую, так и в темную фазы;
- повреждение SCN выравнивает ритмы расхода энергии, что нарушает энергетический баланс даже без различий в общих расходах энергии;
- генерируемые SCN ритмы активности и потребления пищи создают обратную связь, которая сильно влияет на часы других тканей. Когда выработка гормонов надпочечников (прямой контроль SCN) и ритмы приема пищи (косвенный контроль поведения) устраняются, то нарушается воздействие ритмических часов на адипоциты и жировую ткань.

Сферы влияния центральных и периферических циркадных часов

- светлые и темные времена суток являются доминирующим фактором времени главных часов в SCN;
- ритм пищевого поведения, возможно, является самым мощным фактором времени периферических тканей;
- ограничение доступа к пище в неактивной фазе у мышей (т. е. в светлой фазе) вызывает фазовый сдвиг в периферических тканевых часах печени, поджелудочной железы, сердца, скелетных мышц и почек. В отличие от этого, центральные часы в SCN не были затронуты. Это расцепление между центральными и периферийными часами происходило в равной степени, когда животные жили с нормальными циклами свет—темнота или в постоянной темноте;
- кормление является неэффективным фактором времени для SCN даже в отсутствие света, его основным фактором времени. В то же время питание является мощным стимулом для периферии, независимо от противоположных сигналов от часов SCN, охваченных светом.

2). Сон

- сон ночью и бодрствование днем также являются циркадным ритмом, связанным со светом;
- основное требование для здоровья человека, поскольку он играет важную роль в физиологическом и психологическом функционировании (Van Cauter et al., 2008; Vincent et al., 2017);
- необходим для нормальных когнитивных функций, метаболизма, регуляции аппетита, иммунной функции и гормональной регуляции (Vincent et al., 2017);
- нарушение режима сна приводит к метаболическим и эндокринным изменениям, например, к резистентности к инсулину и непереносимости глюкозы (Johnston, 2014);
- снижение продолжительности сна связано с повышенным риском ожирения и кардиометаболических заболеваний, вероятно, в обратной J-образной зависимости с оптимальным количеством сна около 7-8 часов в сутки (Zhou et al., 2019).

Сон

- частичное лишение сна привело к увеличению потребления энергии, но не к увеличению затрат энергии, что привело к чистому положительному энергетическому балансу в 385 ккал/день (Al Khatib et al., 2017);
- в пилотном перекрестном исследовании (Sleep-E study) показано, что качество сна связано с метаболизмом липидов (Al Khatib et al., 2016);
- потенциальная роль недостаточного сна в ожирении и риске кардиометаболических заболеваний (Gibson-Moore & Chambers, 2019);
- данные пяти краткосрочных исследований продления сна после ограничения сна свидетельствуют о некоторых улучшениях в состоянии здоровья, таких как регулирование гормонов аппетита, метаболизма глюкозы, веса тела и потребления пищи при продлении сна у коротко спящих (Pizinger et al., 2018);
- необходимы дальнейшие исследования с использованием объективных показателей продолжительности и качества сна, чтобы определить, может ли улучшение качества ночного сна способствовать снижению массы тела (Gibson-Moore & Chambers, 2019).

3). Важность завтрака

- в Великобритании до трети населения эпизодически или регулярно пропускает завтрак (Ривз и др., 2013);
- употребление пищи в начале дня после ночного голодания может играть фундаментальную роль в регулировании нормальных ритмов и контроле уровня глюкозы (Clayton et al., 2020);
- большинство наблюдательных исследований предполагают возможный защитный эффект употребления завтрака против увеличения жировой массы (Gibney et al., 2018);
- контролируемые вмешательства не подтверждают гипотезу о том, что пропуск завтрака положительно влияет на энергетический баланс (Chowdhury et al., 2016; Levitsky & Pacanowski, 2013; Sievert et al., 2019).

4). Прерывистое (интермиттирующее питание)

- внедрение длительных периодов голодания и ограничение потребления пищи в определенные части дня становится все более популярным, поскольку это может обеспечить эффективный метод управления весом и улучшения метаболического здоровья;
- прерывистое питание связано со здоровым старением (de Cabo & Mattson, 2019);
- три наиболее широко изученных режима прерывистого питания чередующееся дневное голодание, прерывистое голодание 5:2 (два дня в неделю) и ежедневное питание с ограничением по времени (de Cabo & Mattson, 2019);
- ограниченное по времени питание (TRF) особая форма прерывистого голодания, основанная на циркадном ритме (Moon et al., 2020);
- 10-ть недель ежедневного прерывистого питания уменьшает потребление пищи, массу тела, одновременно улучшая маркеры метаболических заболеваний, такие как холестерин липопротеинов низкой плотности и чувствительность к инсулину (Lynch et al., 2021).

Ритм питания и возраст

- циркадные паттерны меняются на протяжении всей жизни (Van Someren, 2000);
- циркадная амплитуда уменьшается с возрастом, время циркадной акрофазы (период времени в цикле, в течение которого цикл достигает пика) становится более изменчивым и зависит от возраста (Cornelissen & Otsuka, 2017);
- как подростки, так и пожилые люди, более склонны к нарушениям сна;
- изменения в регуляции циркадных ритмов способствуют появлению симптомов определенных возрастных заболеваний, таких как ьолезнь Альцгеймера (Van Someren, 2000);
- учет ритма питания актуален для подростков и пожилых людей, а также для тех, кто работает в (ночные) смены.

НАРУШЕНИЯ ЦИРКАДНЫХ РИТМОВ И КАРДИОМЕТАБОЛИЧЕСКОЕ ЗДОРОВЬЕ

1). Ночная работа

- в настоящее время имеется значительный объем доказательств роли нарушенных циркадных ритмов в патогенезе метаболических заболеваний;
- острое нарушение циркадного ритма достоверно изменяет метаболизм глюкозы и индуцирует диабетогенное состояние у людей;
- в рандомизированном исследовании, имитирующем работу в ночную смену, 3 дня инверсии фазы (т. е. бодрствование и прием пищи в неактивной фазе) показали значительное снижение чувствительности к инсулину и увеличение уровня постпрандиальной глюкозы в ответ на тот же прием пищи, а после 6 дней инверсии фазы протеомика плазмы выявила изменения в ритмах многих белков, которые регулируют гомеостаз глюкозы, наряду с гораздо более высоким уровнем постпрандиальной глюкозы и инсулина;

Ночная работа

- в значительной степени был инвертирован ритм глюкагона плазмы, что само по себе является фактором риска развития диабета;
- повышенный уровень глюкагона потенциально объясняется стимулирующим действием мелатонина (который достигает максимума ночью) на альфа-клетки поджелудочной железы;
- хронические нарушения циркадного ритма ухудшают гомеостаз глюкозы и повышают риск заболевания, а сменная работа увеличивает риск развития диабета 2 типа.

Ночная работа

- состав рациона и потребление энергии во время ночных смен не является основным фактором нарушения обмена веществ;
- особенности питания работников ночной смены показало, что, за исключением незначительного повышения уровня сахара и снижения потребления насыщенных жиров в ночную смену, не было никакой разницы в потреблении калорий или соблюдении диетических рекомендаций по сравнению с дневными сменами или выходными днями;
- наибольшее изменение в поступлении питательных веществ во время ночных смен связано с его временем, и это само по себе может способствовать нарушению обмена веществ;

2). Образ жизни

- характер питания вахтовых рабочих в выходные дни, когда продолжительность голодания приближается к продолжительности сна, также наблюдался среди населения в целом;
- данные, собранные с помощью приложения для смартфонов, показали, что большинство здоровых взрослых участников питались с произвольными интервалами в течение 14-15 часов;
- тенденция жизни современных людей состоит в том, чтобы сократить ночной пост, продолжая потребление в неактивной фазе циркадного периода;
- даже небольшое сокращение времени пищевого воздержания до 10 11 ч привело к потере веса и снижению уровня инсулина в плазме.

3). Социальный джет-лаг

- постоянная доступность пищи, снижение продолжительности сна и более длительные активные часы являются общими для современного образа жизни;
- многие люди испытывают хроническое несоответствие между их эндогенными циркадными ритмами и социально диктуемыми ритмами поведения (например, время начала работы или учебы);
- расхождение между внутренними и навязанными ритмами может быть количественно оценено по разнице между средней точкой сна в рабочие и свободные от работы дни;
- это явление, называемое социальным реактивным джет-лагом, испытывают до 87% дневного трудоспособного населения;
- социальный джет-лаг независимо связан с ожирением, риском развития сахарным диабетом 2 типа, абдоминальным ожирением и метаболическим синдромом.

Факторы нарушения циркадных ритмов

- воздействие света в темную фазу;
- потребление пищи в неактивной фазе;
- нарушение сна.

Свет в ночное время

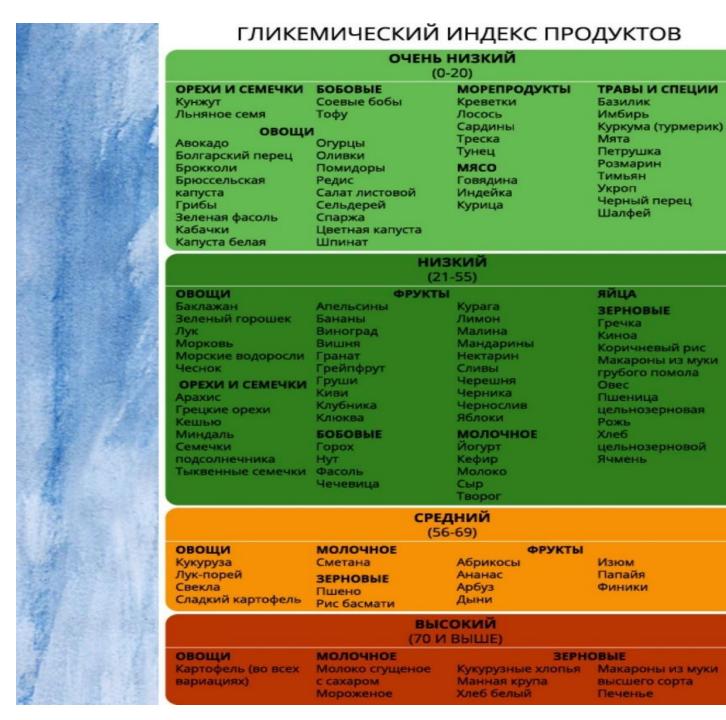
- свет это самый мощный индуктор главных часов в SCN;
- в популяции медицинских работников фазовый сдвиг основных часов после 3-4 последовательных ночных сдвигов может составлять 71%, что объясняется интенсивностью светового воздействия в соответствии с базовой кривой фазовой реакции человека;
- часы SCN регулируют общесистемный энергетический метаболизм, а также активность и поведение в поиске пищи;
- это объясняет почему независимо от других факторов образа жизни (например, продолжительности сна, физической активности и курения), свет в ночное время коррелирует с повышенным риском развития ожирения у людей.

РЕКОМЕНДАЦИИ ПО РИТМУ ПРИЕМА ПРОДУКТОВ ПИТАНИЯ

1). Калории

- время суток, в которое потребляется определенное количество калорий, может повлиять на уровень гликемии;
- исследования на животных показали, что нарушение экспрессии генов периферических часов из-за пропуска завтрака или снижения потребления пищи в первый прием пищи в день, наряду с высококалорийными обедами (несмотря на отсутствие различий в ежедневном общем потреблении калорий), приводит к более высоким суточным колебаниям глюкозы.

Калории


- когда большая часть дневных потребностей в калориях потреблялась за ужином, заболеваемость диабетом у пожилых мужчин и женщин была в 2 раза выше;
- в группе пациентов, которая потребляла больше калорий за завтраком, наблюдалось большее снижение уровня глюкозы и инсулина в крови натощак по сравнению с потреблением большего количества калорий за обедом;
- наблюдалось снижение гликемических и инсулинемических реакций на пероральный тест на толерантность к глюкозе после высококалорийного завтрака по сравнению с высококалорийным ужином;
- при сахарном диабете 2 типа высококалорийный завтрак/низкокалорийный ужин (контроль - низкокалорийный завтрак/высококалорийны ужин - снижение постпрандиальной гипергликемии, увеличение инсулина и глюкагоноподобного пептида-1 (GLP-1) в течение всего дня;
- суточная вариабельность гликемического контроля у больных сахарным диабетом 2-го типа;
- ночное питание связано с ухудшением контроля уровня глюкозы и повышением риска диабета 2 типа.

2). Гликемический индекс

- гликемический индекс определяется как потенциал повышения уровня глюкозы в крови при употреблении углеводистой пищи;
- углеводы с низким гликемическим индексом полезны, поскольку оказывают меньшее влияние на концентрацию глюкозы в крови и защищают от гипогликемии;
- продукты с низким гликемическим индексом: бобовые, яблоки, курица и пр. продукты, входящие в состав резилиенс-диеты.

Гликемический индекс

- продукты с низким гликемическим индексом были более эффективны в контроле уровня глюкозы утром. Возможно, это можно объяснить изменениями чувствительности к инсулину, которая снижается в течение дня;
- дополнительное влияние оказывают гормоны, такие как глюкагон и кортизол, на которые влияют циркадные ритмы и влияют на секрецию инсулина и гликемический ответ;
- прием пищи с низким гликемическим индексом вечером и в полночь приводил к более высоким уровням глюкозы и сопутствующему более высокому уровню инсулина по сравнению с утренним приемом;
- прием пищи с низким гликемическим индексом, независимо от размера порций пищи, улучшал гликемическую реакцию утром, но мало влиял на ночь. Эта временная разница была связана с влиянием эндогенного циркадного ритма на метаболизм глюкозы.

3). Жиры

- потребление большего количества углеводов, чем жиров по утрам, предотвращает развитие диабета и метаболического синдрома;
- рандомизированное перекрестное исследование у здоровых мужчин, в котором сравнивалось, влияние диеты с высоким содержанием углеводов и с высоким содержанием жиров в разное время суток;
- более быстрое повышение уровня глюкозы в плазме наблюдалось при диете с высоким содержанием углеводов по сравнению с диетой с высоким содержанием жиров;
- циркадный ритм концентрации глюкозы в плазме, причем циркадный эффект был обусловлен потреблением диеты с высоким содержанием жиров;
- известно, что качество потребляемого жира влияет на метаболизм, отсутствует последовательная информация о степени насыщения и длине цепи жирных кислот, влияющих на постпрандиальную гликемию и липидемию, что еще больше подчеркивает необходимость изучения хронобиологии потребления пищевых жиров на гомеостаз глюкозы.

4). Белки

- увеличение количества белков в пище может снизить уровень постпрандиальной глюкозы в ночное время;
- полезно для людей позднего хронотипа или людей, которые питаются поздно ночью, которые более предрасположены к гликемическим отклонениям и, следовательно, это снижает риск гипергликемии;
- на способность белка пищи снижать уровень глюкозы влияет время его потребления;
- нужны дополнительные исследования по изучению гликемического и инсулинемического влияния белка в пище в соответствии со временем суток.

Сочетания продуктов с точки зрения ритма питания

- потребление оливкового масла за полчаса до картофеля снижает постпрандиальный уровень глюкозы и инсулина при сахарном диабете 2 типа;
- молоко перед употреблением хлеба, а не при совместном употреблении обоих продуктов, значительно снижает постпрандиальную гликемию и инсулинемию;
- употребление куриного мяса снижает гликемическую реакцию на белый хлеб, а его употребление за 15 минут до белого риса вызывал наибольшее снижение гликемии;
- последовательность приема пищи является важным регулятором уровня постпрандиальной глюкозы;
- потребление овощей, затем мяса и, наконец, риса, было лучшей последовательностью для ослабления гликемического ответа без увеличения потребности в инсулине у здоровых взрослых.

Влияние продуктов на биологические часы

- некоторые пищевые компоненты обладают способностью модулировать циркадные часы и влиять на контроль гликемии;
- полифенолы зеленого чая, такие как катехины, показали свою эффективность в снижении уровня глюкозы натощак и после приема пищи;
- употребление зеленого чая вечером способен снизить концентрацию глюкозы в плазме крови после приема пищи по сравнению с чаем плацебо, принимаемым в то же время;
- кофе способен предупреждать развитие сахарного диабета;
- проспективное когортное исследование показало связь между употреблением кофе с кофеином и снижением риска диабета 2 типа, но только тогда, когда кофе употреблялся во время обеда;
- в рандомизированном перекрестном исследовании кофе с кофеином, потребляемый утром, имел более высокую постпрандиальную реакцию глюкозы и инсулина на более поздний прием пищи.

Влияние ритмичности питания на биологические часы

- исследования метаболомики подтверждают сильное влияние приема пищи на ритмический метаболизм;
- в постоянных условиях вынужденной позы, тусклого света, недосыпания и ежечасного изокалорийного питания было обнаружено, что ~15% метаболитов в слюне и плазме имеют циркадный ритм, причем большая часть в слюне-аминокислоты, а большая часть в плазмеметаболиты липидов;
- заметные ритмы в уровне свободных жирных кислотах и триглицеридах, которые достигали максимума в светлой фазе; поскольку они не зависели от циклов питания или отдыха, это предполагало, что эндогенные циркадные осцилляторы контролируют липидный обмен;
- примерно 15% метаболитов, которые были ритмичными независимо от ритмов питания, когда участников кормили обычной пищей (т. е. три раза в день плюс перекус), 60-70% метаболитов становились ритмичными, и большинство из них сохраняли ритмичность во время постоянного бодрствования;
- ритмичность достигается в половине человеческого метаболома за счет ритмического питания, в то время как ритмы сна/бодрствования оказывают сравнительно небольшое влияние.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

Распорядок питания

- Завтрак (6:30-9:30).
- Обед (12:00-13:30). Обязательно одно блюдо с мясом и овощами.
- Полдник (17:00-18:30). Пик продукции инсулина, допустимы продукты с сахаром (небольшой десерт).
- Ужин (за два три часа до сна). Самый легкий прием пищи за весь день, блюда, содержащие постную рыбу, морепродукты или белое мясо. Обязательно нужно добавить сырые овощи или овощные салаты.

Заключение. Ритм питания как новый фактор риска хронических неинфекционных заболеваний

- ритм питания новый модифицируемый фактор риска многих хронических неинфекционных заболеваний;
- современный образ жизни, включая сменную работу, длительное воздействие искусственного света и неустойчивый режим питания, нарушает циркадную систему, потенциальные последствия велики (Cornelissen & Otsuka, 2017);
- вахтовые работники, особенно работающие в ночное время, подвергаются повышенному риску развития хронических неинфекционных заболеваний, таких как диабет 2 типа и кардиометаболические заболевания (Depner et al., 2014; Reutrakul & Knutson, 2015);
- неправильный ритм питания может быть посредником повышенного риска хронических неинфекционных заболеваний у вахтовых рабочих. С учетом того, что 15% рабочей силы Великобритании работают посменно и 12%-в ночные смены (ONS, 2011), последствия для общественного здравоохранения являются весьма существенными.

СПАСИБО ЗА ВНИМАНИЕ!

